Predicting Atrial Fibrillation Recurrence by Combining Population Data and Virtual Cohorts of Patient-Specific Left Atrial Models
Roney, Caroline H., Iain Sim, Jin Yu, Marianne Beach, Arihant Mehta, Jose Alonso Solis-Lemus, Irum Kotadia et al. Predicting Atrial Fibrillation Recurrence by Combining Population Data and Virtual Cohorts of Patient-Specific Left Atrial Models. Circulation: Arrhythmia and Electrophysiology (2021): CIRCEP-121.
Paper , Meshes (Zenodo) , Data governanceVirtual cohort of 1000 synthetic heart meshes from adult human healthy population
Rodero, Cristobal, Strocchi, Marina, Marciniak, Maciej, Longobardi, Stefano, Whitaker, John, O'Neill, Mark D., et al. Virtual cohort of 1000 synthetic heart meshes from adult human healthy population. PLOS Computational Biology. Zenodo; 2021. doi:10.5281/zenodo.4506930
Meshes (Zenodo)Virtual cohort of extreme and average four-chamber heart meshes from statistical shape model
Rodero, Cristobal, Strocchi, Marina, Marciniak, Maciej, Longobardi, Stefano, Whitaker, John, O'Neill, Mark D., et al. Virtual cohort of extreme and average four-chamber heart meshes from statistical shape model. PLOS Computational Biology. Zenodo; 2021. doi:10.5281/zenodo.4593739
Meshes (Zenodo)Virtual cohort of adult healthy four-chamber heart meshes from CT images
Rodero, Cristobal, Strocchi, Marina, Marciniak, Maciej, Longobardi, Stefano, Whitaker, John, O'Neill, Mark D., et al. Virtual cohort of adult healthy four-chamber heart meshes from CT images. PLOS Computational Biology. Zenodo; 2021. doi:10.5281/zenodo.4590294
Meshes (Zenodo)A publicly available virtual cohort of four-chamber heart meshes for cardiac electro-mechanics simulations
Strocchi M, Augustin CM, Gsell MAF, Karabelas E, Neic A, et al. (2020) A publicly available virtual cohort of four-chamber heart meshes for cardiac electro-mechanics simulations. PLOS ONE 15(6): e0235145
Paper , Meshes (Zenodo)The Impact of Wall Thickness and Curvature on Wall Stress in Patient-Specific Electromechanical Models of the Left Atrium
Augustin CM, Fastl TE, Neic A, et al. The impact of wall thickness and curvature on wall stress in patient-specific electromechanical models of the left atrium. Biomech Model Mechanobiol. 2020;19(3):1015‐1034. doi:10.1007/s10237-019-01268-5
Paper , Meshes (Zenodo)Constructing a Human Atrial Fibre Atlas
Roney, C.H., Bendikas, R., Pashakhanloo, F. et al. Constructing a Human Atrial Fibre Atlas. Ann Biomed Eng 49, 233–250 (2021). https://doi.org/10.1007/s10439-020-02525-w
Paper , Meshes (Zenodo)A Virtual Cohort of Twenty-four Left-ventricular Models of Ischemic Cardiomyopathy Patients
Mendonca Costa, Caroline, Neic, Aurel Medical University of Graz, and Kerfoot, Eric King’s College London. A Virtual Cohort of Twenty-four Left-ventricular Models of Ischemic Cardiomyopathy Patients (2020)
KCL Library ArchivePersonalized computational finite element models for left atrial electromechanics
Fastl, Thomas E, Tobon-Gomez, Catalina King's College London, Crozier, Andrew Medical University of Graz, and McCarthy, Karen P Royal Brompton Hospital. Personalized Computational Finite Element Models for Left Atrial Electromechanics (2018).
KCL Library ArchiveA model of cardiac contraction based on novel measurements of tension development in human cardiomyocytes.
S Land, SJ Park-Holohan, NP Smith, CG Dos Remedios, JC Kentish, SA Niederer. JMCC, 2017
A model of human cardiac contraction intended for multi-scale modelling applications. Download includes relevant experimental data, and C++ code is available on request.
Pubmed , MatlabVerification of cardiac mechanics software: benchmark problems and solutions for testing active and passive material behaviour
Land S, Gurev V, Arens S, Augustin CM, Baron L, Blake R, Bradley C, Castro S, Crozier A, Favino M, Fastl TE. Verification of cardiac mechanics software: benchmark problems and solutions for testing active and passive material behaviour. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2015 Dec 8;471(2184):20150641.
To aid in the verification of current and future cardiac mechanics solvers, this study provides three benchmark problems for cardiac mechanics. These benchmark problems test the ability to accurately simulate pressure-type forces that depend on the deformed objects geometry, anisotropic and spatially varying material properties similar to those seen in the left ventricle and active contractile forces.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences , BitbucketA Spatially Detailed Model of Isometric Contraction Based on Competitive Binding of Troponin I Explains Cooperative Interactions between Tropomyosin and Crossbridges
Land S, Niederer SA. PLoS Computational Biology, 2015
A spatially detailed ODE model of contraction based on continuous flexible chain model of the thin filament. Includes explicit TnI kinetics and a biophysically detailed representation of RU-RU, RU-XB, and XB-XB cooperativity.
PLOS , MatlabAn analysis of deformation-dependent electromechanical coupling in the mouse heart
Land S, Niederer SA, Aronsen JM, Espe EK, Zhang L, Louch WE, Sjaastad I, Sejersted OM, Smith NP. J Physiol. 2012 15;590(Pt 18):4553-69. Epub 2012 May 21. PubMed ID: 22615436
A model of contraction fitted to mouse data at physiological temperature and frequency, including length and velocity dependent tension generation.
Journal of Physiology , cellML , MatlabA mathematical model of the murine ventricular myocyte: a data-driven biophysically based approach applied to mice overexpressing the canine NCX isoform A Mathematical Model of the Slow Force Response to Stretch in Rat Ventricular Myocytes
L. Li , S. A. Niederer , W. Idigo , Y. H. Zhang , P. Swietach , B. Casadei , N. P. Smith, 2010 American Journal of Physiology, Voume 299 no. H1045-H1063
A mouse electrophysiology model fitted to mouse data at physiological temperatures and capable of pacing to physiological pacing rates.
American Journal of Physiology , cellMLA Quantitative Analysis of Cardiac Myocyte Relaxation: A Simulation Study
Steven Niederer, Peter Hunter, Nicholas Smith, 2006 Biophysical Journal, 90 1697-1722 PubMed ID: 16339881
A biophysical data driven model of length, velocity and calcium dependent tension development in rat cardiac muscle at room temperature.
Science Direct , cellML